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Abstract  

Spontaneous speech synthesis is a complex enterprise, as the 

data has large variation, as well as speech disfluencies nor-

mally omitted from read speech. These disfluencies perturb the 

attention mechanism present in most Text to Speech (TTS) sys-

tems. Explicit modelling of prosodic features has enabled intu-

itive prosody modification of synthesized speech. Most pros-

ody-controlled TTS, however, has been trained on read-speech 

data that is not representative of spontaneous conversational 

prosody. The diversity in prosody in spontaneous speech data 

allows for more wide-ranging data-driven modelling of pro-

sodic features. Additionally, prosody-controlled TTS requires 

extensive training data and GPU time which limits accessibil-

ity. We use neural HMM TTS as it reduces the parameter size 

and can achieve fast convergence with stable alignments for 

spontaneous speech data. We modify neural HMM TTS to ena-

ble prosodic control of the speech rate and fundamental fre-

quency. We perform subjective evaluation of the generated 

speech of English and Swedish TTS models and objective eval-

uation for English TTS. Subjective evaluation showed a signif-

icant improvement in naturalness for Swedish for the mean 

prosody compared to a baseline with no prosody modification, 

and the objective evaluation showed greater variety in the 

mean of the per-utterance prosodic features. 

Introduction 

The advent of end-to-end neural text-to-speech (TTS) 

systems, such as Tacotron 2 (Shen et al., 2018), and 

FastSpeech 2 (Ren et al., 2020),  has improved the qual-

ity of TTS compared to hidden Markov model-based 

TTS systems, and the quality now rivals human speech 

(An et al., 2021). Especially in conversational systems, 

however, these systems face issues relating to the eco-

logical validity of the training data (Wester et al., 2016), 

which often consists of read-speech data or read conver-

sational data (Kim et al., 2020; Shen et al., 2018). These 

TTS architectures treat naturally occurring prosodic var-

iation as noise that is averaged for the output prosody 

(Raitio et al., 2020; Ram Mohan et al., 2021), and which 

do not allow for any control over the produced prosody 

(Raitio et al., 2022).  

Concurrently, spontaneous speech has been increas-

ingly used in speech synthesis (Gustafson et al., 2021). 

Although spontaneous speech is the most ecologically 

valid data to model conversational prosody, disfluencies, 

such as fillers, hesitations, and large variability make 

spontaneous speech challenging to model (Székely et al., 

2019). Another challenge is the lack of structure, which 

includes unconventional sentence structure as well as 

overlap between the different speakers (Székely et al., 

2019). 

In this paper we investigate the use of spontaneous 

data for speech synthesis with prosodic feature control 

using neural HMM TTS (Mehta et al., 2022). Neural 

HMM TTS utilizes the monotonic statewise na- 

ture of left-right no-skip hidden Markov models 

(HMMs), which has two benefits: first, it helps in learn-

ing to synthesize coherent speech from small amounts of 

(disorderly) data, and secondly, it enables us to synthe-

size disfluencies, as the HMM can learn a specific state 

for the annotated disfluencies. We extend neural HMM 

TTS (Mehta et al., 2022) to learn a latent space to explic-

itly model the speech rate (sr) and the fundamental fre-

quency (f0). 

We train an English and a Swedish base speech syn-

thesis model on read-speech datasets which are then fine-

tuned on spontaneous speech datasets. We perform a 

subjective evaluation and an objective evaluation on the 

speech synthesizers. For the subjective evaluation, we 

asked participants to rate synthesized utterances for nat-

uralness. For the objective evaluation, we compare the 

distribution of the per-utterance mean and per-utterance 

standard deviation of the prosodic features for the read-

speech and spontaneous datasets, as well as the synthe-

sized utterances. 

Speech synthesizers 

We use a modified version of neural HMM TTS (Mehta 

et al., 2022) for the experiments. Neural HMM TTS is an 

autoregressive TTS system that synthesizes mel-spectro-

grams conditioned on the input text. It has an encoder-

decoder architecture based on Shen et al. (2018), but uses 

a no-skip left-to-right HMM in lieu of cumulative atten-

tion to enforce monotonic alignments. To enable the pro-

sodic modification, we add a single feed-forward layer 

before the CNN-Bi-LSTM encoder, which projects the 

per-utterance speech rate and per-utterance mean funda-

mental frequency into a latent space. The output of the 

feed-forward layer is added to the phone embeddings to 

help learn the relation between text and prosodic fea-

tures.  

We trained separate speech synthesizers for the sub-

jective and objective evaluations. For the subjective 

evaluation, we trained two speech synthesizers, one 

baseline voice and one voice with enabled prosody mod-

ification for each language for 15000 iterations. For the 

objective evaluation we use a further trained version at 

37000 iterations of the English baseline and modifiable 

speech synthesizers. All synthesizers were trained on one 

NVIDIA GEFORCE RTX 3090 GPU. 

Data 

For the English read-speech model, the baseline in the 

objective evaluation, we used the LJSpeech corpus (Ito 

& Johnson, 2017). This corpus contains 24 hours or 

11,300 utterances of a single female speaker of US Eng-

lish reading passages from seven non-fiction books pub-

lished between 1884 and 1964. The utterances range in 

length from one to ten seconds. The spontaneous English 

model was trained on a corpus created from the audio of 

the Trinity Speech-Gesture dataset (Ferstl & McDonnell, 

2018). The dataset consists of 25 impromptu mono-

logues of approximately 10 minutes long by a male voice  



  
 
Figure 1. The per-utterance speech rate and per-utterance mean 

log(f0) centred around the dataset mean for the synthesized ut-

terances. 

 

actor speaking Hiberno-English. The monologues con-

cern topics such as hobbies, daily activities, and interests. 

 

The data for the non-spontaneous Swedish model is an 

open-source TTS corpus from the Norwegian 

Språkbanken (“NST Swedish Speech Synthesis (44 

Khz),” 2021) containing read speech. This dataset was 

recorded by a male professional actor and consists of 11 

hours of audio or 5200 utterances. The spontaneous Swe-

dish corpus was compiled from six hours of audio ex-

tracted from a podcast in conversational style recorded 

by a male Swedish comedian. In the podcast, the speaker 

and his co-host prepare and evaluate sandwiches from a 

cookbook. Each podcast is 30-50 minutes long and con-

tains discussions about food and exchanges of amusing 

stories from both interlocutors. Even though the most ex-

treme speech behaviours were manually removed, such 

as singing, laughing, shouting, and speaking while eat-

ing, the resulting TTS corpus contains a lot of speaking 

style variation. 

Experiments 

Subjective evaluation 

For the subjective evaluation, we performed a 

MUSHRA-like MOS test. The speech synthesizers were 

pre-trained on the read-speech corpus of the respective 

language for 10k iterations. The speech synthesizer with-

out modifiable prosody was fine-tuned on the spontane-

ous speech corpus for 5k iterations. The training regimen 

for the prosodically modifiable speech synthesizer was 

identical apart from the addition of the prosodic features 

during fine-tuning. The selected utterances consisted of 

an equal mix of sentences omitted from training from the 

read-speech and spontaneous speech corpora. For the 

subjective evaluation, we compared an unmodified neu-

ral HMM TTS system baseline with the neural HMM 

TTS speech synthesizer with enabled prosody modifica-

tion. 

English  

We recruited 20 participants using Prolific. The partici-

pants were required to be native speakers of English and 

reside in English-speaking countries. The participants 

were paid £3.13 for an average completion time of 14 

minutes and 10 seconds. 

We presented the participants with 20x6 matched 

stimuli. These stimuli consisted of one baseline unmodi-

fied stimulus and five stimuli where each feature, either 

speech rate or fundamental frequency, was the mean fea-

ture, or lowered or raised by 1 standard deviation from 

the mean. The MUSHRA-like MOS scores can be seen 

in Table 1. A one-way ANOVA shows no significant dif-

ference between the unmodified baseline and the pros-

ody modification.       

Swedish 

For the Swedish subjective evaluation, we recruited 15 

participants using Prolific. The people were required to 

be native speakers of Swedish residing in Sweden. Par-

ticipants were paid £3.76 and completed the evaluation 

in an average of 15 minutes and 10 seconds. 

The participants were presented with 20x6 matched 

stimuli which consisted of a baseline unmodified stimu-

lus and five stimuli in which the speech rate or funda-

mental frequency were -1, 0, or 1 standard deviations 

from the mean. The MUSHRA-like MOS scores can be 

seen in Table 1.  

 

Table 1. The MUSHRA-like MOS scores for the subjective 

evaluation. 

Features Standard 

deviation 

English Swedish 

SR -1 3.07 ±1.14 2.69±1.14 

 1 3.16±1.19 2.66±1.07 

f0 -1 2.97±1.18 2.46±1.07 

 1 3.12±1.08 2.54±1.03 

Mean 

feats. 

0 3.13±1.08 2.71±1.10 

No feats. - 3.01±1.12 2.43±1.13 

 

Objective evaluation 

We performed an objective evaluation by comparing 80 

generated utterances for the read-speech and spontane-

ous speech synthesizers for English, for which the spon-

taneous speech synthesizer has enabled prosody modifi-

cation. We trained both voices for 37000 iterations. The 

prosody modifiable spontaneous voice was trained on the 

read-speech dataset for 20000 iterations without feature 

modification, before being fine-tuned on the spontane-

ous dataset for 17000 iterations. The synthesized utter-

ances for the prosody modifiable spontaneous voice were 

synthesized with a balanced set of features ranging from 

-2 to 2 standard deviations from the mean. The results 

can be found in Figure 1.          

Discussion 

Subjective evaluation 

For the subjective evaluation for English, a one-way 

ANOVA showed no significant difference between nat-

uralness scores for the unmodified baseline compared to 

the prosodically modified stimuli. This suggests that the 



prosody modification does not hinder training for the 

speech synthesizer, or result in deteriorated naturalness, 

even at 15k training steps.   

For Swedish, a one-way ANOVA showed a differ-

ence in the means for the stimuli. A post-hoc Tukey in-

dicated that the mean speech rate and mean fundamental 

frequency modification resulted in a significant improve-

ment in the naturalness. This suggests that the model 

benefits from being conditioned on the mean speech rate 

and fundamental frequency. 

The MOS scores are not straightforward to compare 

to other spontaneous speech synthesizers, as, e.g. 

Székely et al. (2019) were evaluated for appropriateness 

of speaking style and authenticity rather than natural-

ness. The Swedish MOS scores are lower than the Eng-

lish MOS scores, which we explain by the particularly 

challenging nature of the Swedish spontaneous corpus; 

the Swedish data was taken from spontaneous conversa-

tion and contains a large number of disfluencies, while 

the English corpus was extracted from a set of mono-

logues. 

Objective evaluation 

Figure 1 shows greater variation for both the speech rate 

and the fundamental frequency. This indicates that at 

37000 the latent space for the prosodic features has been 

demonstrably learned, and that it results in greater varia-

tion than synthesizing the read speech without features. ¨ 

Noteworthy is that while for the speech rate the 

greater variation for the spontaneous speech occurs both 

for slower and faster speech, the greater variation for the 

fundamental frequency mostly occurs for lower-pitched 

speech. Another identifiable difference is the apparent 

normal distribution of the speech rate and fundamental 

frequency for the unmodified synthesized utterances, 

compared to the more sporadic distribution for the spon-

taneous synthesized utterances. 

Conclusion 

In this study, we examined the use of spontaneous speech 

data for synthesizing prosodically modifiable speech. 

Our study demonstrated that the synthesized speech is 

more diverse than for synthesized read speech, and that 

the naturalness is either equal or better than unmodified 

utterances even after a very short training time. Addition-

ally, it shows that modifiable prosody is achievable with 

relatively little GPU usage.  

More research is needed, however, before synthe-

sized spontaneous speech is of the same quality as syn-

thesized read speech in order to tap the vast amount of 

spontaneous data available for speech synthesis and to 

achieve the prosodic variability of spontaneous speech.   
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